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Recap 

§  Programmable vertex und fragment processors 

§  Expose that which was already there anyway 

§  Texture memory = now general storage for any data 
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A More Abstract Overview of the Programmable Pipeline 

Vertex 
Shader 

Primitive  
Assembly 

Fragment 
Shader 

Rasterization 

Fragment/Framebuffer 
Tests & Operations 

Framebuffer 

OpenGL State 
glBegin(GL_…), glColor, … 

glLight, glRotate, … 

glVertex() 

Vertices in  
Model Coord. 

Vertices in  
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Connectivity 

Primitives 

Fragments 

New Fragments 
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More Versatile Texturing by Shader Programming 

§  Declare texture in the shader (vertex or fragment): 

§  Load and bind texture in OpenGL program as usual: 

§  Establish a connection between the two: 

§  Access in fragment shader: 

uniform sampler2D myTex; 

glBindTexture( GL_TEXTURE_2D, myTexture ); 

glTexImage2D(...);"

uint mytex = glGetUniformLocation( prog, "myTex" ); 

glUniform1i( mytex, 0 );  // 0 = texture unit, not ID 

vec4 c = texture2D( myTex, gl_TexCoord[0].xy );"
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Example: A Simple "Gloss" Texture 

§  Idea: expand the conventional Phong lighting by introducing a 
specular reflection coefficient that is mapped from a texture on the 
surface 

demos/shader/vorlesung_demos/gloss.{frag,vert} 

l 
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I
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= (rd cos� + rs cos
p ⇥)·I
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rs = rs(u, v)
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Procedural Textures Using Shader Programming 

§  Goal:  
Brick texture 

§  Simplification &  
parameters: 

BrickStepSize.y 

BrickStepSize.x 

BrickPercent.y 

BrickPercent.x 

MortarColor BrickColor 
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§  General mechanics: 

§  Vertex shader: normal lighting calculation 

§  Fragment shader: 

-  For each fragment, determine if the point lies in the brick or in the mortar on the 
basis of the x/y coordinates of the corresponding point in the object’s space  

-  After that, multiply the corresponding color with intensity from lighting model 

§  First three steps towards a complete shader program: 

demos/shader/vorlesung_demos/brick.vert and  brick[1-3].frag  
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Noise 

§  Most procedural textures look too "clean" 

§  Idea: add all sorts of noise 

§  Dirt, grime, random irregularities, etc., for a more realistic appearance 

§  Ideal qualities of a noise function:  

§  At least C2-continuous 

§  It’s sufficient if it looks random 

§  No obvious patterns or repetitions 

§  Repeatable (same output with the same input) 

§  Convenient domain, e.g. [-1,1] 

§  Can be defined for 1-4 dimensions 

§  Isotropic (invariant under rotation) 
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§  Why we don't just use a noise texture: 

Sphere rendered with a 3D 
texture to provide the noise. 

Notice the artifacts from  
linear interpolation. 

Sphere rendered with 
procedural noise. 
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§  Simple idea, demonstrated by a 1-dimensional example: 

1. Choose random y-values from [-1,1] at the integer positions: 

2.  Interpolate in between, e.g. cubically (linearly isn’t sufficient): 

§  This kind of noise function is called value noise 
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3.  Generate multiple noise functions with different frequencies: 

 

4.  Add all of these together 

-  Produces noise at different "scales" 
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§  Persistence = "how much amplitude is scaled for successive 
octaves scaled for successive octaves" 

§  Example: 

perlin(x) =
1X

i=0

p

i
ni(2

i
x) , x 2 [0, 1], p 2 [0, 1]

Persistence 
Scaling along x for octaves 
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§  The same thing in 2D: 

§  Easily allows itself to be generalized 
into higher dimensions 

§  Also called pink noise, or fractal noise 

§  Ken Perlin first dealt with this during 
his work on TRON 

Result 
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Gradient Noise 

§  Specify the gradients (instead of values) at integer points: 

§  Interpolation to obtain values: 

§  At position x, calculate y0 and y1 as values  
of the lines through x=0 and x=1 with  
the previously specified (random) gradients 

§  Interpolate y0 and y1 with a sinusoidal blending  
function, e.g. 
 
or 

1 0 x 

y0 

y1 

h(x) = 3x2 � 2x3

q(x) = 6x5 � 15x4 + 10x3
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§  Advantage of the quintic blending function:  
→ the entire noise function is C2-continuous 

§  Example where one can easily see this: 

Ken Perlin 

Cubic interpolation Quintic interpolation 

q00(0) = q00(1)
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§  Gradient noise in 2D: 

§  Set gradients at integer grid points 

-  Gradient = 2D vector, not necessarily with length 1 

§  Interpolation (as in 1D): 

-  W.l.o.g.,  P = (x,y) ∈ [0,1]x[0,1] 

-  Let the following be the gradients: 
g00 = gradient at (0,0),   g01 = gradient at (0,1),  
g10 = gradient at (1,0),   g11 = gradient at (1,1) 

-  Calculate the values zij of the "gradient ramps" gij 
at point P : 
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-  Blending of 4 z-values through bilinear interpolation: 

§  Analogous in 3D: 

§  Specify gradients on a 3D grid 

§  Evaluate 23 = 8 gradient ramps 

§  Interpolate these with tri-linear interpolation  
and the blending function 

§  And in d-dim. space? → complexity is            ! 

z

x0 = (1� q(x))z00 + q(x)z10 , z

x1 = (1� q(x))z01 + q(x)z11

z

xy

= (1� q(y))z
x0 + q(y)z

x1

O(2d) 
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Simplex Noise 

§  d-dimensionaler simplex := 
       combination of d + 1 affinely independent points 

§  Examples: 
§  1D simplex = line,  2D simplex = triangle,   

3D simplex = tetrahedron 

§  In general: 
§  Points P0, …, Pd   are given 

§  d-dim. simplex = all points X with 
 
 

 
with 

P0 

P1 

P2 

P3 
X = P0 +

d�

i=1

siui

ui = Pi � P0 , si ⇤ 0 ,
d�

i=0

si ⇥ 1
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§  In general, the following is true: 

§  A d-dimensional simplex has d+1 vertices 

§ With equilateral d-dimensional simplices, one can partition a cube that 
was suitably "compressed" along its diagonals 

-  Such a "compressed" d-dimensional cube contains d!  many simplices 

§  Consequence: with equilateral d-dimensional simplexes, one can 
partition d-dimensional space (tessellation) 
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§  Construction of the noise function over a simplex tessellation 
(hence "simplex noise"): 

1.  Determine the simplex in which a point P lies  

2.  Determine all of its corners and the gradients in the corners  

3.  Determine (as before) the value of these "gradient ramps" in P 

4. Generate a weighted sum of these values 

§  Choose weighting functions so that the “influence” of a simplex grid 
point only extends to its incident simplexes 
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§  A huge advantage: has only complexity O(d) 

§  For details see "Simplex noise demystified" (on the course's 
homepage) 

§  Comparison between classical value noise and simplex noise: 

classical 

simplex 

2D 3D 4D 
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§  Four noise functions are defined in the GLSL standard: 
      float noise1(gentype),  vec2 noise2(gentype),   
      vec3  noise3(gentype),  vec4 noise4(gentype). 

§  Calling such a noise function: 
  v = noise2( f*x + t, f*y + t ) 

§ With f, one can control the spatial frequency, 
With t, one can generate an animation (t="time"). 

§  Analogous for 1D and 3D noise 

§  Caution: range is [-1,+1]! 

§  Cons: 

§  Are not implemented everywhere 

§  Are sloooooooow… 
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Example: Application of Noise to our Procedural Texture 

§  Our procedural brick texture (please ignore the uneven outer torus 

contour, that's an artifact from Powerpoint): 

The code for this example  
is on the course's 
homepage (after 

unpacking the archive, 
it is in directory 

vorlesung_demos 
files brick.vert  and 

brick[4-7].frag ) 

With variation in color With fine-grain variations 

With curvy brick edges With black spots 
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Other Examples for the Applications of Noise 

Procedural bump mapping, done by computing noise 
in the pixel shader and using that for perturbing the 

surface normal 

Ken Perlin's famous solid 
texture marble vase, 1985 
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g = a * perlin(x,y,z) 
grain = g - int(g)  
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Remark on Implementation 

§  Goal: repeatable noise function 

§  That is, f(x) always returns the same value for the same x 

§  Choose fixed gradients at the grid points 

§  Observation: a few different ones are sufficient 

§  E.g. for 3D, gradients from this set are sufficient: 

§  Integer coordinates of the grid points can be simply hashed→ 
index into a table of pre-defined gradients 



G. Zachmann 28 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS 

Light Refraction 

§  With shaders, one can implement 
approximations of simple global effects  

§  Example: light refraction 

§  What does one need to calculate the refracted 
ray?  

§  Snell's Law: 

§  Needed: n, d, n1, n2 

§  Everything is available in the fragment shader 

§  So, one can calculate t per pixel 

§  So why is rendering transparent objs difficult? 

§  In order to calculate the correct intersection 
point of the refracted ray, one needs the entire 
geometry! 

n1 sin �1 = n2 sin �2 n2

n1

n

d

t

�1

�2
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§  Goal: approximate transparent object with 
two planes, which the incoming & refracted 
rays intersect 

§  Step 1: determine the next intersection point 

§  Idea: approximate d 

§  To do that, render a depth map of the back-
facing polygons in a previous pass, from the 
viewpoint 

§  Use binary search to find a good approximation 
of the depth (ca. 5 iterations suffice) 

P1 

P2 

d 

P1 

P2 

M 

t 

P2 = P1 + dt
Index of
refraction: ni

P1

Index of
refraction: nt

N⃗2

T⃗2

T⃗4

P3

V⃗

θi

θt

P2 d
N⃗

N⃗1

d
V⃗

T⃗1

P4

Figure 2: Vector V⃗ hits the surface at P1 and refracts in di-
rection T⃗1 based upon the incident angle θi with the normal
N⃗1. Physically accurate computations lead to further refrac-
tions at P2, P3, and P4. Our method only refracts twice,
approximating the location of P2 using distances dN⃗ and dV⃗ .

follows Snell’s Law, given by:

ni sin θi = nt sin θt,

where ni and nt are the indices of refraction for the incident
and transmission media. θi describes the angle between the
incident vector V⃗ and the surface normal N⃗1, and θt gives
the angle between the transmitted vector T⃗1 and the negated
surface normal.

When ray tracing, refracting through complex objects
is trivial, as refracted rays are independently intersected
with the geometry, with subsequent recursive applications of
Snell’s Law. Unfortunately, in the GPU’s stream processing
paradigm performing independent operations for different
pixels proves expensive. Consider the example in Figure 2.
Rasterization determines V⃗ , P1, and N⃗1, and a simple frag-
ment shader can compute T⃗1. Unfortunately, exactly locat-
ing point P2 is not possible on the GPU without resorting to
accelerated ray-based approaches [Purcell et al. 2003]. Since
GPU ray tracing techniques are relatively slow, multiple-
bounce refractions for complex polygonal objects are not
interactive.

3 Image-Space Refraction

Instead of using the GPU for ray tracing, we propose to
approximate the information necessary to refract through
two interfaces with values easily computable via rasteriza-
tion. Consider the information known after rasterization.
For each pixel, we can easily find:

• the incident direction V⃗ ,
• the hitpoint P1, and
• the surface normal N⃗1 at P1.

Using this information, the transmitted direction T⃗1 is easily
computable via Snell’s Law, e.g., in Lindholm et al. [2001].

Consider the information needed to find the doubly re-
fracted ray T⃗2. To compute T⃗2, only T⃗1, the point P2, and
the normal N⃗2 are necessary. Since finding T⃗1 is straight-
forward, our major contribution is a simple method for ap-
proximating P2 and N⃗2. Once again, we use an approximate
point P̃2 and normal N⃗2 since accurately determining them
requires per-pixel ray tracing.

After finding T⃗2, we assume we can index into an infinite
environment map to find the refracted color. Future work
may show ways to refract nearby geometry.

Figure 3: Distance to back faces (a), to front faces (b), and
between front and back faces (c). Normals at back faces (d)
and front faces (e). The final result (f).

3.1 Approximating the Point P2

While too expensive, ray tracing does provide valuable in-
sight into how to approximate the second refraction location.
Consider the parameterization of a ray Porigin + t V⃗direction.
In our case, we can write this as: P2 = P1 +d T⃗1, where d is
the distance ∥P2−P1∥. Knowing P1 and T⃗1, approximating
location P̃2 simply requires finding an approximate distance
d̃, such that:

P̃2 = P1 + d̃ T⃗1 ≈ P1 + d T⃗1

The easiest approximation d̃ is the non-refracted distance
dV⃗ between front and back facing geometry. This can eas-
ily be computed by rendering the refractive geometry with
the depth test reversed (i.e., GL GREATER instead of GL LESS),
storing the z-buffer in a texture (Figure 3a), rerendering nor-
mally (Figure 3b), and computing the distance using the z
values from the two z-buffers (Figure 3c). This simple ap-
proximation works best for convex geometry with relatively
low surface curvature and a low index of refraction.

Since refracted rays bend inward (for nt > ni) toward the

inverted normal, as nt becomes very large T⃗1 approaches
−N⃗1. This suggests interpolating between distances dV⃗ and
dN⃗ (see Figure 2), based on θi and θt, for a more accurate

approximation d̃. We take this approach in our results, pre-
compute dN⃗ for every vertex, and interpolate using:

d̃ =
θt

θi
dV⃗ +

„

1 −
θt

θi

«

dN⃗ .

A precomputed sampling of d could give even better ac-
curacy if stored in a compact, easily accessible manner. We
tried storing the model as a 642 geometry image [Praun and
Hoppe 2003] and sampling d in 642 directions for each texel
in the geometry image. This gave a 40962 texture containing
sampled d values. Unfortunately, interpolating over this rep-
resentation resulted in noticeably discretized d values, lead-
ing to worse results than the method described above.

1051
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§ On the binary search for finding the 
depth between P1 and P2: 

-  Situation: given a ray t, with tz < 0, and 

two "bracket" points A(0) and B(0), 

between which the intersection point 

must be; and a precomputed depth map 

-  Compute midpoint M(0) 

-  Project midpoint with projection matrix 

⟶  

-  Use                        to index the depth map 

⟶  

-  If                          

-  If  

Mproj

(Mproj

x

,Mproj

y

)

d̃

Viewpoint 

t 
B(0) 

A(0) 

Viewpoint 

t 
B(0) 

A(0) 

M(0) 

Mproj

z

d̃

d̃ > Mproj

z ) set A(1) = M (0)

d̃ < Mproj

z ) set B (1) = M (0)

t 

Viewpoint 

B(0) 

A(0) 

M(0) 

Mproj

z

d̃
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§  Step 2: determine the normal in P2 

§  To do that, render a normal map of all 
back-facing polygons from the viewpoint 
(yet another pass before the actual 
rendering) 

§  Project P2 with respect to the viewpoint 
into screen space 

§  Index the normal map 

§  Step 3: 

§  Determine t2 

§  Index an environment map 

t₂ 
n 

Normal map 

P2 



G. Zachmann 32 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS 

§  Many open challenges: 

§ When depth complexity > 2: 

-  Which normal/which depth value should be stored in the depth/normal maps? 

§  Approximation of distance 

§  Aliasing 
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Examples 

With internal reflection 
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The Geometry Shader 

§  Situated between vertex shader and 
rasterizer 

§  Essential difference to other shaders:  
§  Per-primitive processing 

§  The geometry shader can produce 
variable-length output! 

§  1 primitive in, k prims out 

§  Is optional (not necessarily present on 
all GPUs) 

§  Note on the side: features stream out 
§  New, fixed-function 

§  Divert primitive data to buffers 

§  Can be transferred back to the OpenGL 
prog ("Transform Feedback") 

 

Vertex 
Shader 

Geometry 
Shader 

Pixel 
Shader 

Input 
Assembler 

Setup/ 
Rasterization 

Buffer Op. 

 
 
 
 
 

Memory 

Vertex 
Buffer 

Texture 

Depth 

Texture 

Texture 

Color 

Index 
Buffer 

Stream 
Out 

Buffer 
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Vertex 
Shader 

uniform 

attribute 

varying in 

Fragment 
Shader 

Rasterizer

varying out 

(x,y,z)

Geometry 
Shader 

Vertex 
Shader 

uniform 

attribute 
varying 

Fragment 
Shader 

Rasterizer Buffer Op.
varying 

(x’,y’,z’)(x,y,z)
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§  The geometry shader's principle 
function: 

§  In general "amplify geometry" 

§ More precisely: can create or destroy 
primitives on the GPU 

§  Entire primitive as input (optionally with 
adjacency) 

§ Outputs zero or more primitives 

-  1024 scalars out max 

§  Example application:  

§  Silhouette extrusion for shadow volumes 
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§  Another feature of geometry shaders: can render the same 
geometry to multiple targets 

§  E.g., render to cube map in a single pass: 

§  Treat cube map as 6-element array 

§  Emit primitive multiple times 

GS 

1 2 3 4 5 0 Render Target 
Array 
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Some More Technical Details 

§  Input / output: 

Point, Line, Line with Adjacency, 
Triangle , Triangle with Adjacency   

Geometry Shader 

Points, Line Strips, 
Triangle Strips 

Points, Lines, Line Strip, Line Loop, Lines 
with Adjacency, Line Strip with Adjacency, 

Triangles, Triangle Strip, Triangle Fan, 
Triangles with Adjacency,  

Triangle Strip with Adjacency  

Application 
generates these 

primitives 

Driver feeds these  
one-at-a-time  

into the Geometry Shader 

 Geometry Shader 
generates (almost) as 

many of these as it wants 
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§  In general, you must specify the type of the primitives that will be 
input and output to and from the geometry shader 

§  These need not necessarily be the same type 

§  Input type: 

§  value = primitive type that this geometry shader will be receiving 

§  Possible values: GL_POINTS, GL_TRIANGLES, … (more later) 

§  Output type: 

§  value = primitive type that this geometry shader will output 

§  Possible values: GL_POINTS, GL_LINE_STRIP, GL_TRIANGLES_STRIP 

 

glProgramParameteri( shader_prog_name,  

                     GL_GEOMETRY_INPUT_TYPE, int value ); 

glProgramParameteri( shader_prog_name,  

                     GL_GEOMETRY_OUTPUT_TYPE, int value ); 
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then the Geometry Shader 
will read them as: 
 
gl_PositionIn[  ]  
gl_TexCoordIn[  ]  
gl_FrontColorIn[  ]  
gl_BackColorIn[  ]  
gl_PointSizeIn[  ]  
gl_LayerIn[  ]  
 
"varying in" 

Data Flow of the Principle Varying Variables 

gl_VerticesIn 

If a Vertex Shader 
writes variables as: 
 
gl_Position 
gl_TexCoord[  ] 
gl_FrontColor 
gl_BackColor  
gl_PointSize 
gl_Layer 
 
"varying" 

and will write them to the 
Fragment Shader as: 
 
gl_Position 
gl_TexCoord[  ] 
gl_FrontColor 
gl_BackColor  
gl_PointSize 
gl_Layer 
 
"varying out" 
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§  If a geometry shader is part of the shader program, then passing 
information from the vertex shader to the fragment shader can 
only happen via the geometry shader: 

Vertex Shader 

Geom Shader 

Fragment Sh. 

varying vec4 gl_Position; 
varying vec4 VColor; 
VColor = gl_Color; 

Already declared for you 

varying in vec4 gl_Position[3]; 
varying in vec4 VColor[3]; 

varying out vec4 gl_Position; 
varying out vec4 FColor; 

varying vec4 FColor; 

gl_Position = gl_Position[0]; 
FColor = VColor[0]: 
Emitvertex(); 
… 

Primitive Assembly 

Rasterizer 

Fragment shader code 

Vertex shader code 
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§  Since you may not emit an unbounded number of points from a 
geometry shader, you are required to let OpenGL know the 
maximum number of points any instance of the shader will emit 

§  Set this parameter after creating the program, but before linking: 

§  A few things you might trip over, when you try to write your first 
geometry shader: 

§  It is an error to attach a geometry shader to a program without 
attaching a vertex shader 

§  It is an error to use a geometry shader without specifying 
GL_GEOMETRY_VERTICES_OUT 

§  The shader will not compile correctly without the #version and 
#extension pragmas 

glProgramParameteri( shader_prog_name,  

                     GL_GEOMETRY_VERTICES_OUT, int n ); 
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§  The geometry shader generates geometry by repeatedly calling 
EmitVertex() and    EndPrimitive() 

§  Note: there is no BeginPrimitive( ) routine. It is implied by  

§  the start of the Geometry Shader, or  

§  returning from the EndPrimitive() call 
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A Very Simple Geometry Shader Program 

#version 120 

#extension GL_EXT_geometry_shader4 : enable void 

main(void) 

{ 

   gl_Position = gl_PositionIn[0] + vec4(0.0, 0.04, 0.0, 0.0);  

   gl_FrontColor = vec4(1.0, 0.0, 0.0, 1.0); 

   EmitVertex(); 

   gl_Position = gl_PositionIn[0] + vec4(0.04, -0.04, 0.0, 0.0); 

   gl_FrontColor = vec4(0.0, 1.0, 0.0, 1.0); 

   EmitVertex(); 

   gl_Position = gl_PositionIn[0] + vec4(-0.04, -0.04, 0.0, 0.0); 

   gl_FrontColor = vec4(0.0, 0.0, 1.0, 1.0); 

   EmitVertex(); 

   EndPrimitive(); 

} 
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Examples 

§  Shrinking triangles: 
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Displacement Mapping 

§  Geometry shader extrudes 
prism at each face  

§  Fragment shader ray-casts 
against height field 

§  Shade or discard pixel 
depending on ray test 

BTexture := (e1,e2,1)

In the same manner we define a local base BWorld with
the world coordinates of the vertices:

f1 :=V2�V1
f2 :=V3�V1

BWorld := ( f1, f2,N1)

The basis transformation from BWorld to BTexture can
be used to move the viewing direction at the vertex posi-
tion V1 to local texture space.
To avoid sampling outside of the prism, the exit point

of the viewing ray has to be determined. In texture space
the edges of the prism are not straightforward to detect
and a 2D intersection calculation has to be performed.
This can be overcome by defining a second local coor-
dinates system which has its axes aligned with the prism
edges. For this we assign 3D coordinates to the vertices
as shown in Figure 2. The respective name for the new
coordinate for a vertex Vi is Oi. Then the the viewing di-

(0,0,1)

(0,1,0)

(0,1,1)

(1,0,1)

(1,0,0)

(0,0,0)

Figure 2: The vectors used to define the second local

coordinate system for simpler calculation of the ray exit

point.

rection can be transformed in exactly the same manner to
the local coordinate system defined by the edges between
the Oi vectors:

g1 := O2�O1
g2 := O3�O1

BLocal := (g1,g2,1).

Again this is the example for the vertexV1. In the follow-
ing the local viewing direction in texture space is called
ViewT , and in the BLocal base representation ViewL. We
assume that the viewing direction changes linearly over
the face of a prism triangle and put the local viewing
direction in both coordinate systems in 3D texture co-
ordinates and use them as input to the fragment shader

pipeline in order to get linearly interpolated local view-
ing directions. The interpolated ViewL allows us to very
easily calculate the distance to the backside of the prism
from the given pixel position as it is either the difference
of the vector coordinates to 0 or 1 depending which side
of the prism we are rendering. With this Euclidean dis-
tance we can define the sampling distance in a sensible
way which is important as the number of samples that
can be read in one pass is limited, and samples should
be evenly distributed over the distance. An example of
this algorithm is shown in figure 3. In this case four sam-
ples are taken inside the prism. The height of the dis-
placement map is also drawn for the vertical slice hit by
the viewing ray. The height of the third sample which is
equal to the third coordinate of its texture coordinate as
explained earlier, is less than the displacement map value
and thus a hit with the displaced surface is detected. To
improve the accuracy of the intersection calculation, the
sampled heights of the two consecutive points with the
intersection inbetween them, are substracted from the in-
terpolated heights of the viewing ray. Because of the in-
tersection the sign of the two differences must differ and
the zero-crossing of the linear connection can be calcu-
lated. If the displacement map is roughly linear between
the two sample points, the new intersection at the zero-
crossing is closer to the real intersection of the viewing
ray and the displaced surface than the two sampled posi-
tions.

Figure 3: Sampling within the extruded prism with a slice

of the displacement map shown.

Although the pixel position on the displaced surface is
now calculated, the normal at this position is still the in-
terpolated normal of the base mesh triangle. It has to be
perturbed for correct shading, in this case standard bump
mapping using a precalculated bump map derived from
the used displacement map is used. The bump map is

Figure 10: Sphere shaped base mesh with a earth displacement map and texture applied to it. Additionally the wire-

frame of the tetrahedral mesh is shown.

Figure 11: Different angle, this time showing europe with slightly exaggerated displacements.

Figure 10: Sphere shaped base mesh with a earth displacement map and texture applied to it. Additionally the wire-

frame of the tetrahedral mesh is shown.

Figure 11: Different angle, this time showing europe with slightly exaggerated displacements.
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Intermezzo: Adjacency Information 

§  In addition to the conventional primitives (GL_TRIANGLE et al.), a 
few new primitives were introduced with geometry shaders 

§  The most frequent one: GL_TRIANGLES_WITH_ADJACENCY 

Triangles with Adjacency 

6N vertices are given 
(where N is the number of triangles to draw). 
Points 0, 2, and 4 define the triangle. 
Points 1,3, and 5 tell where adjacent triangles are. 

2 

1 

40 

N = 1 
5 

3 
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Shells & Fins 

§  Suppose, we want to generate a 
"fluffy", ghostly character like 
this 

§  Idea: 

§  Render several shells (offset 
surfaces) around the original 
polygonal geometry 

-  Can be done easily using the vertex 
shader 

§  Put different textures on each shell 
the generate a volumetric, 
 yet "gaseous" shell  
appearance 
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§  Problem at the silhouettes: 

§  Solution: add "fins" at the 
silhouette 
§  Fin = polygon standing on 

the edge between 2 
silhouette polygons 

§  Makes problem much less 
noticeable 

8 shells 
+ 

fins 
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§  Idea: fins can be generated in the 
geometry shader 

§  How it works: 

§  All geometry goes through the 
geometry shader 

§  Geometry shader checks whether or 
not the polygon has a silhouette 
edge: 
 
where e = eye vector 

§  If one edge = silhouette, then the 
geometry shader emits a fin polygon, 
and the input polygon 

§  Else, it just emits the input polygon 
n1 

n2 

silhouette , en1 > 0 ^ en2 < 0 or en1 < 0 ^ en2 > 0
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Demo 

demos/shader/GLSLShowpieceLite/ 
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Example Application: Lost Planet Extreme Condition 
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Texture for color Texture for angle 
of fur hairs 

Noise texture for  
length of fur hairs 

§  More tricks are usually needed to make it look really good: 

Furthermore, 
one should  
try to render 
self-shadowing 
of strands of fur  
hairs … 
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§  Typically, what you as a programmer need to do is to write the 
shader and expose the parameters via a GUI to the artists, so that 
they can determine the best look 
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Silhouette Rendering 

§  Goal: 
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§  Technique: 2-pass rendering 

1. Pass: render geometry regularly 

2. Pass: switch on geometry shader for silhouette rendering 

§  Switch to green color for all geometry (no lighting) 

§  Render geometry again 

§  Input of geometry shader = triangles 

§  Output = lines 

§  Geometry shader checks, whether triangle contains silhouette edge 

§  If yes ⟶ output line 

§  If no ⟶ output no geometry 

§  Geometry shader input = GL_TRIANGLE_WITH_ADJACENCY 
output = GL_LINE_STRIP 
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More Applications of Geometry Shaders 

§  Hedgehog Plots: 
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Shader Trees 
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Concluding Demos 

demos/shader/GLSLShowpiece/GLSLShowpiece.app 
⟶ Inferno, Granite, Eroded, Glass, HeatHaze, Julia, ParticleFountain, VertexNoise, TorusMorph 
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Resources on Shaders 

§  Real-Time Rendering; 3rd edition 

§  The tutorial on the course home page 

§  OpenGL Shading Language Reference: 
http://www.opengl.org/documentation/glsl/  

§  On the geometry shader in particular: 
www.opengl.org/registry/specs/ARB/geometry_shader4.txt 
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The Future of GPUs? 
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