
Advanced Computer Graphics
Advanced Shader Programming

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 2 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Recap

§  Programmable vertex und fragment processors

§  Expose that which was already there anyway

§  Texture memory = now general storage for any data

Vertex
Processing

Cull, Clip
& Project Assemble

And
Rasterize
Primitive

Fragment
Processing

Per-
Fragment

Operations

Frame
Buffer

Operations

Texture
Memory

Frame
Buffer

Read Back
Control

H
os

t
C

om
m

an
ds

D
isplay

glBegin(GL_…)

glEnable, glLight, …

Pixel
Pack &
Unpack

g
l
V
e
r
t
e
x

glTexImage

Status
Memory

G. Zachmann 3 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

A More Abstract Overview of the Programmable Pipeline

Vertex
Shader

Primitive
Assembly

Fragment
Shader

Rasterization

Fragment/Framebuffer
Tests & Operations

Framebuffer

OpenGL State
glBegin(GL_…), glColor, …

glLight, glRotate, …

glVertex()

Vertices in
Model Coord.

Vertices in
Camera Coord.

Connectivity

Primitives

Fragments

New Fragments

G. Zachmann 4 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

More Versatile Texturing by Shader Programming

§  Declare texture in the shader (vertex or fragment):

§  Load and bind texture in OpenGL program as usual:

§  Establish a connection between the two:

§  Access in fragment shader:

uniform sampler2D myTex;

glBindTexture(GL_TEXTURE_2D, myTexture);

glTexImage2D(...);"

uint mytex = glGetUniformLocation(prog, "myTex");

glUniform1i(mytex, 0); // 0 = texture unit, not ID

vec4 c = texture2D(myTex, gl_TexCoord[0].xy);"

G. Zachmann 5 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Example: A Simple "Gloss" Texture

§  Idea: expand the conventional Phong lighting by introducing a
specular reflection coefficient that is mapped from a texture on the
surface

demos/shader/vorlesung_demos/gloss.{frag,vert}

l

v

n
r

I
out

= (rd cos� + rs cos
p ⇥)·I

in

rs = rs(u, v)

G. Zachmann 6 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Procedural Textures Using Shader Programming

§  Goal:
Brick texture

§  Simplification &
parameters:

BrickStepSize.y

BrickStepSize.x

BrickPercent.y

BrickPercent.x

MortarColor BrickColor

G. Zachmann 7 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  General mechanics:

§  Vertex shader: normal lighting calculation

§  Fragment shader:

-  For each fragment, determine if the point lies in the brick or in the mortar on the
basis of the x/y coordinates of the corresponding point in the object’s space

-  After that, multiply the corresponding color with intensity from lighting model

§  First three steps towards a complete shader program:

demos/shader/vorlesung_demos/brick.vert and brick[1-3].frag

G. Zachmann 8 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Noise

§  Most procedural textures look too "clean"

§  Idea: add all sorts of noise

§  Dirt, grime, random irregularities, etc., for a more realistic appearance

§  Ideal qualities of a noise function:

§  At least C2-continuous

§  It’s sufficient if it looks random

§  No obvious patterns or repetitions

§  Repeatable (same output with the same input)

§  Convenient domain, e.g. [-1,1]

§  Can be defined for 1-4 dimensions

§  Isotropic (invariant under rotation)

G. Zachmann 9 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  Why we don't just use a noise texture:

Sphere rendered with a 3D
texture to provide the noise.

Notice the artifacts from
linear interpolation.

Sphere rendered with
procedural noise.

G. Zachmann 10 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  Simple idea, demonstrated by a 1-dimensional example:

1. Choose random y-values from [-1,1] at the integer positions:

2.  Interpolate in between, e.g. cubically (linearly isn’t sufficient):

§  This kind of noise function is called value noise

G. Zachmann 11 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

3.  Generate multiple noise functions with different frequencies:

4.  Add all of these together

-  Produces noise at different "scales"

G. Zachmann 12 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  Persistence = "how much amplitude is scaled for successive
octaves scaled for successive octaves"

§  Example:

perlin(x) =
1X

i=0

p

i
ni(2

i
x) , x 2 [0, 1], p 2 [0, 1]

Persistence
Scaling along x for octaves

G. Zachmann 13 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  The same thing in 2D:

§  Easily allows itself to be generalized
into higher dimensions

§  Also called pink noise, or fractal noise

§  Ken Perlin first dealt with this during
his work on TRON

Result

G. Zachmann 15 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Gradient Noise

§  Specify the gradients (instead of values) at integer points:

§  Interpolation to obtain values:

§  At position x, calculate y0 and y1 as values
of the lines through x=0 and x=1 with
the previously specified (random) gradients

§  Interpolate y0 and y1 with a sinusoidal blending
function, e.g.

or

1 0 x

y0

y1

h(x) = 3x2 � 2x3

q(x) = 6x5 � 15x4 + 10x3

G. Zachmann 16 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  Advantage of the quintic blending function:
→ the entire noise function is C2-continuous

§  Example where one can easily see this:

Ken Perlin

Cubic interpolation Quintic interpolation

q00(0) = q00(1)

G. Zachmann 17 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  Gradient noise in 2D:

§  Set gradients at integer grid points

-  Gradient = 2D vector, not necessarily with length 1

§  Interpolation (as in 1D):

-  W.l.o.g., P = (x,y) ∈ [0,1]x[0,1]

-  Let the following be the gradients:
g00 = gradient at (0,0), g01 = gradient at (0,1),
g10 = gradient at (1,0), g11 = gradient at (1,1)

-  Calculate the values zij of the "gradient ramps" gij
at point P :

z10 = g10 ·
✓
x � 1
y

◆

z11 = g11 ·
✓
x � 1
y � 1

◆
x

y

0 1

1

0

z00 = g00 ·
✓
x

y

◆

z01 = g01 ·
✓

x

y � 1

◆

G. Zachmann 18 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

-  Blending of 4 z-values through bilinear interpolation:

§  Analogous in 3D:

§  Specify gradients on a 3D grid

§  Evaluate 23 = 8 gradient ramps

§  Interpolate these with tri-linear interpolation
and the blending function

§  And in d-dim. space? → complexity is !

z

x0 = (1� q(x))z00 + q(x)z10 , z

x1 = (1� q(x))z01 + q(x)z11

z

xy

= (1� q(y))z
x0 + q(y)z

x1

O(2d)

G. Zachmann 19 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Simplex Noise

§  d-dimensionaler simplex :=
 combination of d + 1 affinely independent points

§  Examples:
§  1D simplex = line, 2D simplex = triangle,

3D simplex = tetrahedron

§  In general:
§  Points P0, …, Pd are given

§  d-dim. simplex = all points X with

with

P0

P1

P2

P3
X = P0 +

d�

i=1

siui

ui = Pi � P0 , si ⇤ 0 ,
d�

i=0

si ⇥ 1

G. Zachmann 20 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  In general, the following is true:

§  A d-dimensional simplex has d+1 vertices

§ With equilateral d-dimensional simplices, one can partition a cube that
was suitably "compressed" along its diagonals

-  Such a "compressed" d-dimensional cube contains d! many simplices

§  Consequence: with equilateral d-dimensional simplexes, one can
partition d-dimensional space (tessellation)

G. Zachmann 21 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  Construction of the noise function over a simplex tessellation
(hence "simplex noise"):

1.  Determine the simplex in which a point P lies

2.  Determine all of its corners and the gradients in the corners

3.  Determine (as before) the value of these "gradient ramps" in P

4. Generate a weighted sum of these values

§  Choose weighting functions so that the “influence” of a simplex grid
point only extends to its incident simplexes

G. Zachmann 22 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  A huge advantage: has only complexity O(d)

§  For details see "Simplex noise demystified" (on the course's
homepage)

§  Comparison between classical value noise and simplex noise:

classical

simplex

2D 3D 4D

G. Zachmann 23 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  Four noise functions are defined in the GLSL standard:
 float noise1(gentype), vec2 noise2(gentype),
 vec3 noise3(gentype), vec4 noise4(gentype).

§  Calling such a noise function:
 v = noise2(f*x + t, f*y + t)

§ With f, one can control the spatial frequency,
With t, one can generate an animation (t="time").

§  Analogous for 1D and 3D noise

§  Caution: range is [-1,+1]!

§  Cons:

§  Are not implemented everywhere

§  Are sloooooooow…

G. Zachmann 24 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Example: Application of Noise to our Procedural Texture

§  Our procedural brick texture (please ignore the uneven outer torus

contour, that's an artifact from Powerpoint):

The code for this example
is on the course's
homepage (after

unpacking the archive,
it is in directory

vorlesung_demos
files brick.vert and

brick[4-7].frag)

With variation in color With fine-grain variations

With curvy brick edges With black spots

G. Zachmann 25 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Other Examples for the Applications of Noise

Procedural bump mapping, done by computing noise
in the pixel shader and using that for perturbing the

surface normal

Ken Perlin's famous solid
texture marble vase, 1985

G. Zachmann 26 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

g = a * perlin(x,y,z)
grain = g - int(g)

G. Zachmann 27 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Remark on Implementation

§  Goal: repeatable noise function

§  That is, f(x) always returns the same value for the same x

§  Choose fixed gradients at the grid points

§  Observation: a few different ones are sufficient

§  E.g. for 3D, gradients from this set are sufficient:

§  Integer coordinates of the grid points can be simply hashed→
index into a table of pre-defined gradients

G. Zachmann 28 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Light Refraction

§  With shaders, one can implement
approximations of simple global effects

§  Example: light refraction

§  What does one need to calculate the refracted
ray?

§  Snell's Law:

§  Needed: n, d, n1, n2

§  Everything is available in the fragment shader

§  So, one can calculate t per pixel

§  So why is rendering transparent objs difficult?

§  In order to calculate the correct intersection
point of the refracted ray, one needs the entire
geometry!

n1 sin �1 = n2 sin �2 n2

n1

n

d

t

�1

�2

G. Zachmann 29 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  Goal: approximate transparent object with
two planes, which the incoming & refracted
rays intersect

§  Step 1: determine the next intersection point

§  Idea: approximate d

§  To do that, render a depth map of the back-
facing polygons in a previous pass, from the
viewpoint

§  Use binary search to find a good approximation
of the depth (ca. 5 iterations suffice)

P1

P2

d

P1

P2

M

t

P2 = P1 + dt
Index of
refraction: ni

P1

Index of
refraction: nt

N⃗2

T⃗2

T⃗4

P3

V⃗

θi

θt

P2 d
N⃗

N⃗1

d
V⃗

T⃗1

P4

Figure 2: Vector V⃗ hits the surface at P1 and refracts in di-
rection T⃗1 based upon the incident angle θi with the normal
N⃗1. Physically accurate computations lead to further refrac-
tions at P2, P3, and P4. Our method only refracts twice,
approximating the location of P2 using distances dN⃗ and dV⃗ .

follows Snell’s Law, given by:

ni sin θi = nt sin θt,

where ni and nt are the indices of refraction for the incident
and transmission media. θi describes the angle between the
incident vector V⃗ and the surface normal N⃗1, and θt gives
the angle between the transmitted vector T⃗1 and the negated
surface normal.

When ray tracing, refracting through complex objects
is trivial, as refracted rays are independently intersected
with the geometry, with subsequent recursive applications of
Snell’s Law. Unfortunately, in the GPU’s stream processing
paradigm performing independent operations for different
pixels proves expensive. Consider the example in Figure 2.
Rasterization determines V⃗ , P1, and N⃗1, and a simple frag-
ment shader can compute T⃗1. Unfortunately, exactly locat-
ing point P2 is not possible on the GPU without resorting to
accelerated ray-based approaches [Purcell et al. 2003]. Since
GPU ray tracing techniques are relatively slow, multiple-
bounce refractions for complex polygonal objects are not
interactive.

3 Image-Space Refraction

Instead of using the GPU for ray tracing, we propose to
approximate the information necessary to refract through
two interfaces with values easily computable via rasteriza-
tion. Consider the information known after rasterization.
For each pixel, we can easily find:

• the incident direction V⃗ ,
• the hitpoint P1, and
• the surface normal N⃗1 at P1.

Using this information, the transmitted direction T⃗1 is easily
computable via Snell’s Law, e.g., in Lindholm et al. [2001].

Consider the information needed to find the doubly re-
fracted ray T⃗2. To compute T⃗2, only T⃗1, the point P2, and
the normal N⃗2 are necessary. Since finding T⃗1 is straight-
forward, our major contribution is a simple method for ap-
proximating P2 and N⃗2. Once again, we use an approximate
point P̃2 and normal N⃗2 since accurately determining them
requires per-pixel ray tracing.

After finding T⃗2, we assume we can index into an infinite
environment map to find the refracted color. Future work
may show ways to refract nearby geometry.

Figure 3: Distance to back faces (a), to front faces (b), and
between front and back faces (c). Normals at back faces (d)
and front faces (e). The final result (f).

3.1 Approximating the Point P2

While too expensive, ray tracing does provide valuable in-
sight into how to approximate the second refraction location.
Consider the parameterization of a ray Porigin + t V⃗direction.
In our case, we can write this as: P2 = P1 +d T⃗1, where d is
the distance ∥P2−P1∥. Knowing P1 and T⃗1, approximating
location P̃2 simply requires finding an approximate distance
d̃, such that:

P̃2 = P1 + d̃ T⃗1 ≈ P1 + d T⃗1

The easiest approximation d̃ is the non-refracted distance
dV⃗ between front and back facing geometry. This can eas-
ily be computed by rendering the refractive geometry with
the depth test reversed (i.e., GL GREATER instead of GL LESS),
storing the z-buffer in a texture (Figure 3a), rerendering nor-
mally (Figure 3b), and computing the distance using the z
values from the two z-buffers (Figure 3c). This simple ap-
proximation works best for convex geometry with relatively
low surface curvature and a low index of refraction.

Since refracted rays bend inward (for nt > ni) toward the

inverted normal, as nt becomes very large T⃗1 approaches
−N⃗1. This suggests interpolating between distances dV⃗ and
dN⃗ (see Figure 2), based on θi and θt, for a more accurate

approximation d̃. We take this approach in our results, pre-
compute dN⃗ for every vertex, and interpolate using:

d̃ =
θt

θi
dV⃗ +

„

1 −
θt

θi

«

dN⃗ .

A precomputed sampling of d could give even better ac-
curacy if stored in a compact, easily accessible manner. We
tried storing the model as a 642 geometry image [Praun and
Hoppe 2003] and sampling d in 642 directions for each texel
in the geometry image. This gave a 40962 texture containing
sampled d values. Unfortunately, interpolating over this rep-
resentation resulted in noticeably discretized d values, lead-
ing to worse results than the method described above.

1051

G. Zachmann 30 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§ On the binary search for finding the
depth between P1 and P2:

-  Situation: given a ray t, with tz < 0, and

two "bracket" points A(0) and B(0),

between which the intersection point

must be; and a precomputed depth map

-  Compute midpoint M(0)

-  Project midpoint with projection matrix

⟶

-  Use to index the depth map

⟶

-  If

-  If

Mproj

(Mproj

x

,Mproj

y

)

d̃

Viewpoint

t
B(0)

A(0)

Viewpoint

t
B(0)

A(0)

M(0)

Mproj

z

d̃

d̃ > Mproj

z) set A(1) = M (0)

d̃ < Mproj

z) set B (1) = M (0)

t

Viewpoint

B(0)

A(0)

M(0)

Mproj

z

d̃

G. Zachmann 31 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  Step 2: determine the normal in P2

§  To do that, render a normal map of all
back-facing polygons from the viewpoint
(yet another pass before the actual
rendering)

§  Project P2 with respect to the viewpoint
into screen space

§  Index the normal map

§  Step 3:

§  Determine t2

§  Index an environment map

t₂
n

Normal map

P2

G. Zachmann 32 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  Many open challenges:

§ When depth complexity > 2:

-  Which normal/which depth value should be stored in the depth/normal maps?

§  Approximation of distance

§  Aliasing

G. Zachmann 33 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Examples

With internal reflection

G. Zachmann 34 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

The Geometry Shader

§  Situated between vertex shader and
rasterizer

§  Essential difference to other shaders:
§  Per-primitive processing

§  The geometry shader can produce
variable-length output!

§  1 primitive in, k prims out

§  Is optional (not necessarily present on
all GPUs)

§  Note on the side: features stream out
§  New, fixed-function

§  Divert primitive data to buffers

§  Can be transferred back to the OpenGL
prog ("Transform Feedback")

Vertex
Shader

Geometry
Shader

Pixel
Shader

Input
Assembler

Setup/
Rasterization

Buffer Op.

Memory

Vertex
Buffer

Texture

Depth

Texture

Texture

Color

Index
Buffer

Stream
Out

Buffer

G. Zachmann 35 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Vertex
Shader

uniform

attribute

varying in

Fragment
Shader

Rasterizer

varying out

(x,y,z)

Geometry
Shader

Vertex
Shader

uniform

attribute
varying

Fragment
Shader

Rasterizer Buffer Op.
varying

(x’,y’,z’)(x,y,z)

G. Zachmann 36 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  The geometry shader's principle
function:

§  In general "amplify geometry"

§ More precisely: can create or destroy
primitives on the GPU

§  Entire primitive as input (optionally with
adjacency)

§ Outputs zero or more primitives

-  1024 scalars out max

§  Example application:

§  Silhouette extrusion for shadow volumes

G. Zachmann 37 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  Another feature of geometry shaders: can render the same
geometry to multiple targets

§  E.g., render to cube map in a single pass:

§  Treat cube map as 6-element array

§  Emit primitive multiple times

GS

1 2 3 4 5 0 Render Target
Array

G. Zachmann 38 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Some More Technical Details

§  Input / output:

Point, Line, Line with Adjacency,
Triangle , Triangle with Adjacency

Geometry Shader

Points, Line Strips,
Triangle Strips

Points, Lines, Line Strip, Line Loop, Lines
with Adjacency, Line Strip with Adjacency,

Triangles, Triangle Strip, Triangle Fan,
Triangles with Adjacency,

Triangle Strip with Adjacency

Application
generates these

primitives

Driver feeds these
one-at-a-time

into the Geometry Shader

 Geometry Shader
generates (almost) as

many of these as it wants

G. Zachmann 39 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  In general, you must specify the type of the primitives that will be
input and output to and from the geometry shader

§  These need not necessarily be the same type

§  Input type:

§  value = primitive type that this geometry shader will be receiving

§  Possible values: GL_POINTS, GL_TRIANGLES, … (more later)

§  Output type:

§  value = primitive type that this geometry shader will output

§  Possible values: GL_POINTS, GL_LINE_STRIP, GL_TRIANGLES_STRIP

glProgramParameteri(shader_prog_name,

 GL_GEOMETRY_INPUT_TYPE, int value);

glProgramParameteri(shader_prog_name,

 GL_GEOMETRY_OUTPUT_TYPE, int value);

G. Zachmann 40 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

then the Geometry Shader
will read them as:

gl_PositionIn[]
gl_TexCoordIn[]
gl_FrontColorIn[]
gl_BackColorIn[]
gl_PointSizeIn[]
gl_LayerIn[]

"varying in"

Data Flow of the Principle Varying Variables

gl_VerticesIn

If a Vertex Shader
writes variables as:

gl_Position
gl_TexCoord[]
gl_FrontColor
gl_BackColor
gl_PointSize
gl_Layer

"varying"

and will write them to the
Fragment Shader as:

gl_Position
gl_TexCoord[]
gl_FrontColor
gl_BackColor
gl_PointSize
gl_Layer

"varying out"

G. Zachmann 41 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  If a geometry shader is part of the shader program, then passing
information from the vertex shader to the fragment shader can
only happen via the geometry shader:

Vertex Shader

Geom Shader

Fragment Sh.

varying vec4 gl_Position;
varying vec4 VColor;
VColor = gl_Color;

Already declared for you

varying in vec4 gl_Position[3];
varying in vec4 VColor[3];

varying out vec4 gl_Position;
varying out vec4 FColor;

varying vec4 FColor;

gl_Position = gl_Position[0];
FColor = VColor[0]:
Emitvertex();
…

Primitive Assembly

Rasterizer

Fragment shader code

Vertex shader code

G. Zachmann 42 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  Since you may not emit an unbounded number of points from a
geometry shader, you are required to let OpenGL know the
maximum number of points any instance of the shader will emit

§  Set this parameter after creating the program, but before linking:

§  A few things you might trip over, when you try to write your first
geometry shader:

§  It is an error to attach a geometry shader to a program without
attaching a vertex shader

§  It is an error to use a geometry shader without specifying
GL_GEOMETRY_VERTICES_OUT

§  The shader will not compile correctly without the #version and
#extension pragmas

glProgramParameteri(shader_prog_name,

 GL_GEOMETRY_VERTICES_OUT, int n);

G. Zachmann 43 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  The geometry shader generates geometry by repeatedly calling
EmitVertex() and EndPrimitive()

§  Note: there is no BeginPrimitive() routine. It is implied by

§  the start of the Geometry Shader, or

§  returning from the EndPrimitive() call

G. Zachmann 44 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

A Very Simple Geometry Shader Program

#version 120

#extension GL_EXT_geometry_shader4 : enable void

main(void)

{

 gl_Position = gl_PositionIn[0] + vec4(0.0, 0.04, 0.0, 0.0);

 gl_FrontColor = vec4(1.0, 0.0, 0.0, 1.0);

 EmitVertex();

 gl_Position = gl_PositionIn[0] + vec4(0.04, -0.04, 0.0, 0.0);

 gl_FrontColor = vec4(0.0, 1.0, 0.0, 1.0);

 EmitVertex();

 gl_Position = gl_PositionIn[0] + vec4(-0.04, -0.04, 0.0, 0.0);

 gl_FrontColor = vec4(0.0, 0.0, 1.0, 1.0);

 EmitVertex();

 EndPrimitive();

}

G. Zachmann 45 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Examples

§  Shrinking triangles:

G. Zachmann 47 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Displacement Mapping

§  Geometry shader extrudes
prism at each face

§  Fragment shader ray-casts
against height field

§  Shade or discard pixel
depending on ray test

BTexture := (e1,e2,1)

In the same manner we define a local base BWorld with
the world coordinates of the vertices:

f1 :=V2�V1
f2 :=V3�V1

BWorld := (f1, f2,N1)

The basis transformation from BWorld to BTexture can
be used to move the viewing direction at the vertex posi-
tion V1 to local texture space.
To avoid sampling outside of the prism, the exit point

of the viewing ray has to be determined. In texture space
the edges of the prism are not straightforward to detect
and a 2D intersection calculation has to be performed.
This can be overcome by defining a second local coor-
dinates system which has its axes aligned with the prism
edges. For this we assign 3D coordinates to the vertices
as shown in Figure 2. The respective name for the new
coordinate for a vertex Vi is Oi. Then the the viewing di-

(0,0,1)

(0,1,0)

(0,1,1)

(1,0,1)

(1,0,0)

(0,0,0)

Figure 2: The vectors used to define the second local

coordinate system for simpler calculation of the ray exit

point.

rection can be transformed in exactly the same manner to
the local coordinate system defined by the edges between
the Oi vectors:

g1 := O2�O1
g2 := O3�O1

BLocal := (g1,g2,1).

Again this is the example for the vertexV1. In the follow-
ing the local viewing direction in texture space is called
ViewT , and in the BLocal base representation ViewL. We
assume that the viewing direction changes linearly over
the face of a prism triangle and put the local viewing
direction in both coordinate systems in 3D texture co-
ordinates and use them as input to the fragment shader

pipeline in order to get linearly interpolated local view-
ing directions. The interpolated ViewL allows us to very
easily calculate the distance to the backside of the prism
from the given pixel position as it is either the difference
of the vector coordinates to 0 or 1 depending which side
of the prism we are rendering. With this Euclidean dis-
tance we can define the sampling distance in a sensible
way which is important as the number of samples that
can be read in one pass is limited, and samples should
be evenly distributed over the distance. An example of
this algorithm is shown in figure 3. In this case four sam-
ples are taken inside the prism. The height of the dis-
placement map is also drawn for the vertical slice hit by
the viewing ray. The height of the third sample which is
equal to the third coordinate of its texture coordinate as
explained earlier, is less than the displacement map value
and thus a hit with the displaced surface is detected. To
improve the accuracy of the intersection calculation, the
sampled heights of the two consecutive points with the
intersection inbetween them, are substracted from the in-
terpolated heights of the viewing ray. Because of the in-
tersection the sign of the two differences must differ and
the zero-crossing of the linear connection can be calcu-
lated. If the displacement map is roughly linear between
the two sample points, the new intersection at the zero-
crossing is closer to the real intersection of the viewing
ray and the displaced surface than the two sampled posi-
tions.

Figure 3: Sampling within the extruded prism with a slice

of the displacement map shown.

Although the pixel position on the displaced surface is
now calculated, the normal at this position is still the in-
terpolated normal of the base mesh triangle. It has to be
perturbed for correct shading, in this case standard bump
mapping using a precalculated bump map derived from
the used displacement map is used. The bump map is

Figure 10: Sphere shaped base mesh with a earth displacement map and texture applied to it. Additionally the wire-

frame of the tetrahedral mesh is shown.

Figure 11: Different angle, this time showing europe with slightly exaggerated displacements.

Figure 10: Sphere shaped base mesh with a earth displacement map and texture applied to it. Additionally the wire-

frame of the tetrahedral mesh is shown.

Figure 11: Different angle, this time showing europe with slightly exaggerated displacements.

G. Zachmann 48 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Intermezzo: Adjacency Information

§  In addition to the conventional primitives (GL_TRIANGLE et al.), a
few new primitives were introduced with geometry shaders

§  The most frequent one: GL_TRIANGLES_WITH_ADJACENCY

Triangles with Adjacency

6N vertices are given
(where N is the number of triangles to draw).
Points 0, 2, and 4 define the triangle.
Points 1,3, and 5 tell where adjacent triangles are.

2

1

40

N = 1
5

3

G. Zachmann 49 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Shells & Fins

§  Suppose, we want to generate a
"fluffy", ghostly character like
this

§  Idea:

§  Render several shells (offset
surfaces) around the original
polygonal geometry

-  Can be done easily using the vertex
shader

§  Put different textures on each shell
the generate a volumetric,
 yet "gaseous" shell
appearance

G. Zachmann 50 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  Problem at the silhouettes:

§  Solution: add "fins" at the
silhouette
§  Fin = polygon standing on

the edge between 2
silhouette polygons

§  Makes problem much less
noticeable

8 shells
+

fins

G. Zachmann 51 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  Idea: fins can be generated in the
geometry shader

§  How it works:

§  All geometry goes through the
geometry shader

§  Geometry shader checks whether or
not the polygon has a silhouette
edge:

where e = eye vector

§  If one edge = silhouette, then the
geometry shader emits a fin polygon,
and the input polygon

§  Else, it just emits the input polygon
n1

n2

silhouette , en1 > 0 ^ en2 < 0 or en1 < 0 ^ en2 > 0

G. Zachmann 52 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Demo

demos/shader/GLSLShowpieceLite/

G. Zachmann 53 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Example Application: Lost Planet Extreme Condition

G. Zachmann 54 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Texture for color Texture for angle
of fur hairs

Noise texture for
length of fur hairs

§  More tricks are usually needed to make it look really good:

Furthermore,
one should
try to render
self-shadowing
of strands of fur
hairs …

G. Zachmann 56 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  Typically, what you as a programmer need to do is to write the
shader and expose the parameters via a GUI to the artists, so that
they can determine the best look

G. Zachmann 57 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Silhouette Rendering

§  Goal:

G. Zachmann 58 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

§  Technique: 2-pass rendering

1. Pass: render geometry regularly

2. Pass: switch on geometry shader for silhouette rendering

§  Switch to green color for all geometry (no lighting)

§  Render geometry again

§  Input of geometry shader = triangles

§  Output = lines

§  Geometry shader checks, whether triangle contains silhouette edge

§  If yes ⟶ output line

§  If no ⟶ output no geometry

§  Geometry shader input = GL_TRIANGLE_WITH_ADJACENCY
output = GL_LINE_STRIP

G. Zachmann 60 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

More Applications of Geometry Shaders

§  Hedgehog Plots:

G. Zachmann 64 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Shader Trees

G. Zachmann 65 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Concluding Demos

demos/shader/GLSLShowpiece/GLSLShowpiece.app
⟶ Inferno, Granite, Eroded, Glass, HeatHaze, Julia, ParticleFountain, VertexNoise, TorusMorph

G. Zachmann 66 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

Resources on Shaders

§  Real-Time Rendering; 3rd edition

§  The tutorial on the course home page

§  OpenGL Shading Language Reference:
http://www.opengl.org/documentation/glsl/

§  On the geometry shader in particular:
www.opengl.org/registry/specs/ARB/geometry_shader4.txt

G. Zachmann 68 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

The Future of GPUs?

G. Zachmann 69 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

G. Zachmann 70 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

G. Zachmann 71 Advanced Shader Techniques Advanced Computer Graphics 24 June 2014 SS

